Proof of Straley's Argument for Bootstrap Percolation

Aernout C. D. van Enter ${ }^{1}$

Received March 17, 1987; revision received May 4, 1987

Abstract

We prove that $P_{c}=1$ for bootstrap percolation with large void instabilities (in particular, if $m=3$ on the square lattice).

KEY WORDS: Bootstrap percolation; large voids; contours.

Bootstrap percolation is a modified site percolation process where each site, after being occupied with probability P, remains occupied only if at least m of its neighboring sites are occupied. If the number of neighbors is less, the site becomes empty (or "culled") and this process continues until each occupied site has at least m neighbors.

This model was introduced in Ref. 1. For more information about bootstrap percolation see Refs. 2-6. We note that in Ref. 6 also a class of models that is dual to bootstrap percolation was introduced, so-called diffusion percolation. The following argument also applies to this case.

If $m=3$ on the square lattice (or $m=4$ on the triangular lattice or $m=5$ on the simple cubic lattice), the allowed finite sets of empty sites have fixed, rigid shapes (rectangles, truncated equilateral triangles, and rectangular prisms, respectively). In this case Straley (unpublished; see Kogut and Leath ${ }^{(2)}$) argued that $P_{c}=1$ because of "large void instabilities." Here we give a simple proof of this assertion. We write down the proof for the square lattice with $m=3$; the other cases are analogous.

The strategy of our proof is to show that with positive probability (and hence, because of ergodicity, with probability one) there exists a large empty square that is not surrounded by any rectangular contour of occupied sites. If one successively empties ("culls") all the sites that have

[^0]less than m neighbors, such a square will end up by eating the whole lattice.

Proof. Take a fixed square \square of $N \times N$ sites and let $1>\varepsilon>0$. Subadditivity of probability gives

$$
\begin{align*}
\operatorname{Prob} & (\square \text { is surrounded by an occupied rectangle }) \\
& <\sum_{n=4 N}^{\infty} P^{n} \#(\text { rectangles around } \square \text { of length } n) \\
& <\sum_{n=4 N}^{\infty} P^{n} \operatorname{Polyn}(n)<\varepsilon \tag{1}
\end{align*}
$$

if N (dependent on P and ε) is large enough.
Remark. The number of rectangles around the origin is polynomially bounded, because (a) the number of shapes for a rectangle of length $2 n$ equals $n-1$, and (b) the number of rectangles of length $2 n$ and fixed shape surrounding the origin is smaller than or equal to $(n-1)^{2}$.

Hence
$\operatorname{Prob}(\square$ is not surrounded by any occupied rectangle)

$$
\begin{equation*}
>1-\varepsilon \tag{2}
\end{equation*}
$$

$\operatorname{Prob}(\square$ is empty and not surrounded by any occupied rectangle)

$$
\begin{equation*}
>(1-P)^{N^{2}}(1-\varepsilon) \supsetneqq 0 \tag{3}
\end{equation*}
$$

The occurrence of such a \square somewhere is a translation-invariant event and by the ergodic theorem ${ }^{(7)}$ it has probability one. (In fact, using only the rigidity, the occupied rectangle need not be occupied at the corner points, but this does not change the argument. ${ }^{2}$) Hence, for any $P<1$ the lattice becomes empty for this percolation process and thus $P_{c}=1$.

ACKNOWLEDGMENTS

This work was supported by the Lady Davis Foundation. I thank Dr. J. Adler for introducing me to bootstrap and diffusion percolation and telling me about this problem. After finishing this work I was informed that S. Goldstein (unpublished) has also proven this result.

[^1]
REFERENCES

1. J. Chalupa, P. L. Leath, and G. R. Reich, J. Phys. C 12:L31 (1979).
2. P. M. Kogut and P. L. Leath, J. Phys. C 14:3187 (1981).
3. N. S. Branco, R. R. Dos Santos, and S. L. A. de Queiroz, J. Phys. C 17:L373 (1984).
4. M. A. Khan, H. Gould, and J. Chalupa, J. Phys. C 18:L233 (1985).
5. N. S. Branco, S. L. A. de Queiroz, and R. R. Dos Santos, J. Phys. C 19:1909 (1986).
6. J. Adler and A. Aharony, Tel Aviv, preprint.
7. P. M. Walters, An Introduction to Ergodic Theory (Springer, New York, 1981).
8. R. Lenormand, Physica 140A:114 (1986), and references therein.

Communicated by J. L. Lebowitz

[^0]: ${ }^{1}$ Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel.

[^1]: ${ }^{2}$ This remark might apply to related models; see, e.g., Ref. 8.

